A Note on the Composition Dependence of the Thermal Diffusion Factor of Ar–He System

B. P. MATHUR
Department of Physics, Kurukshetra University, Kurukshetra, India

V. P. S. NAiN
Department of Physics, Rajasthan University, Jaipur, India

and S. C. SAXENA
Thermophysical Properties Research Center, Purdue University, Lafayette, Indiana, U.S.A.

(2. Naturforsch. 22 a, 810 [1967]; received 10 April 1967)

The thermal diffusion factor \(\alpha_T \), for the Ar–He system is measured for a mixture containing 18.9\% He in a two-bulb apparatus with its hot and cold bulbs at temperatures 78.5 and \(-196.3^\circ C\), respectively. The \(\alpha_T \) value referring to \(-135.8^\circ C\) is 0.287. Experimental results are compared with the CHAPMAN–ENSKOG theory and the exp-six potential.

There is some special interest in the experimental and theoretical studies of the composition dependence of thermal diffusion factor, \(\alpha_T \). The point can be elaborated by casting the expression for \(\alpha_T \) in the following familiar form:

\[
\alpha_T = (6C^*-5)g.
\]

The "g" factor is a complicated function of different quantities \(^1\) but is very feebly dependent on temperature \(^2\). Thus, by \(\alpha_T \) measurements as a function of temperature one can adjust for a reasonable potential, its parameters such that the temperature dependence is explained. The real test of theory and potential therefore consists in its ability to reproduce the composition dependence. Here also a critical examination reveals that the "g" factor is only weakly dependent on the choice of potential. Consequently \(\alpha_T \) variation with composition offers a good check for the test of theory.

Here, we report our study for the Ar–He system on the same apparatus as used by MATHUR and SAXENA \(^3\).

8 S. C. SAXENA and B. P. MATHUR, Rev. Mod. Phys. 37, 316 [1965].