Gas-Solid Interaction
II: Dielectric Behaviour of Apolar Vapours Adsorbed on γ-alumina* **

MANLIO SANESI and VITTORIANO WAGNER ***

Institute of Physical Chemistry, University, Pavia (Italy)

(Z. Naturforschg. 22 a, 355—358 [1967]; received 7 January 1967)

The adsorption of vapours of C₆H₆, CCl₄ and cyclo-C₄H₁₂ respectively on γ-Al₂O₃ is followed by means of electric capacity measurements, and the dielectric isotherms are drawn for the three heterogeneous systems. The shape of the isotherms is discussed, and equations are proposed for calculating the apparent dielectric constants of the adsorbates from the slopes of the isotherms.

In physical adsorption the interaction of adsorbed molecules with solids is mainly due to induction forces acting between the surface electric field and permanent or induced dipoles in the adsorbate, and to London dispersion forces, these prevailing, for example, in adsorption of apolar molecules ¹.

In the last years it has been shown that the dielectric behaviour of the heterogeneous adsorbent-adsorbate systems is deeply affected by the predominant type of interaction; it became also apparent that, while dielectric data relating to polar adsorbed phases can generally be treated in terms of hindered or restricted rotation of dipoles close to the adsorbing surface, greater difficulties are involved when dealing with apolar adsorbed phases ². In the latter case, e. g. some characteristic discontinuities of dielectric isotherms have not been clearly and uniquely explained.

In this work the dielectric behaviour of cyclo-hexane, carbon tetrachloride and benzene, respectively, adsorbed on γ-alumina was experimentally investigated at 25 °C. The adsorption isotherms of these systems had been reported in a previous paper ³.

** Experimental

Apparatus and materials. The apparatus, including vacuum pump and line, the thermostat and the pyrex container of the dielectric cell, was substantially the same as the one employed for previous adsorption measurements ⁴. By simply interchanging the pyrex covers of the adsorption chamber, it was possible to introduce into the latter, instead of the bulb for gravimetric measurements, a capacitor-cell consisting of two coaxial gold-plated brass cylinders mounted on a stout teflon base and firmly held apart by teflon spacers. Electrical vacuum-tight connection was effected by two conical brass joints, exactly fitting into ground-glass sockets on the cover, corresponding to the condenser-cell terminals. Outside, the joints allowed the insertion of a standard General Radio Co. coaxial connector.

The measurements of electric capacitance and dissipation factor were made by means of a General Radio capacitance bridge type 716-CS1; variable frequency oscillator and null detector system also employed and were treated by the same procedures ².

Results. For each of the systems studied the capacity increments of the condenser-cell filled with the probe referred to the initial capacity due to Al₂O₃ alone, were measured as a function of the equilibrium pressure of the vapour phase. Isothermal measurements (25 °C) were extended over a frequency range from 0.1 to 1.4 MHz, in order to reveal relaxation phenomena possibly occurring in that range. The very small tan δ values, however, showed a significant trend and

³ M. Sanesi and V. Wagner, Z. Naturforschg. 22 a, 203 [1967].
always remained approximately the same as with Al₂O₃ alone. They required no discussion and consequently were not reported in this paper.

In Fig. 1 the capacity increments ΔC at 1 Mc/sec are plotted vs. relative pressure \(p_R = p/p_0 \), where \(p_0 \) = vapour pressure of liquid at 25°C.

From the adsorption isotherms at the same temperature the amount adsorbed \(a \) was evaluated for each \(p_R \) value, thus allowing to draw dielectric isotherms (i.e., plots of \(ΔC \) vs. \(a \)). The experimental data are reported in Table 1, while the dielectric isotherms are shown in Fig. 2.

<table>
<thead>
<tr>
<th>(p_R)</th>
<th>(a) (mg/g)</th>
<th>(ΔC) (μF)</th>
<th>(p_R)</th>
<th>(a) (mg/g)</th>
<th>(ΔC) (μF)</th>
<th>(p_R)</th>
<th>(a) (mg/g)</th>
<th>(ΔC) (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0277</td>
<td>7.8</td>
<td>2.42</td>
<td>0.0307</td>
<td>32.0</td>
<td>1.37</td>
<td>0.0214</td>
<td>15.0</td>
<td>9.51</td>
</tr>
<tr>
<td>0.0625</td>
<td>14.8</td>
<td>3.85</td>
<td>0.0492</td>
<td>44.5</td>
<td>2.77</td>
<td>0.0693</td>
<td>32.0</td>
<td>16.95</td>
</tr>
<tr>
<td>0.0809</td>
<td>17.9</td>
<td>4.29</td>
<td>0.0527</td>
<td>46.7</td>
<td>2.99</td>
<td>0.1971</td>
<td>51.4</td>
<td>25.07</td>
</tr>
<tr>
<td>0.1107</td>
<td>22.7</td>
<td>5.47</td>
<td>0.0650</td>
<td>52.6</td>
<td>4.55</td>
<td>0.2664</td>
<td>66.0</td>
<td>28.33</td>
</tr>
<tr>
<td>0.1414</td>
<td>27.5</td>
<td>6.47</td>
<td>0.0843</td>
<td>61.0</td>
<td>6.32</td>
<td>0.3090</td>
<td>77.9</td>
<td>30.89</td>
</tr>
<tr>
<td>0.1681</td>
<td>31.9</td>
<td>7.51</td>
<td>0.1045</td>
<td>68.8</td>
<td>8.54</td>
<td>0.3356</td>
<td>86.5</td>
<td>32.90</td>
</tr>
<tr>
<td>0.1988</td>
<td>37.3</td>
<td>8.54</td>
<td>0.1299</td>
<td>77.1</td>
<td>10.43</td>
<td>0.3676</td>
<td>97.0</td>
<td>35.60</td>
</tr>
<tr>
<td>0.2326</td>
<td>44.1</td>
<td>10.02</td>
<td>0.1677</td>
<td>88.0</td>
<td>12.94</td>
<td>0.4049</td>
<td>108.1</td>
<td>38.32</td>
</tr>
<tr>
<td>0.2644</td>
<td>51.0</td>
<td>11.80</td>
<td>0.2151</td>
<td>101.9</td>
<td>15.40</td>
<td>0.4581</td>
<td>122.0</td>
<td>42.51</td>
</tr>
<tr>
<td>0.3003</td>
<td>60.2</td>
<td>13.47</td>
<td>0.2529</td>
<td>113.9</td>
<td>17.47</td>
<td>0.5902</td>
<td>144.1</td>
<td>47.62</td>
</tr>
<tr>
<td>0.3279</td>
<td>67.9</td>
<td>15.35</td>
<td>0.2932</td>
<td>128.0</td>
<td>19.54</td>
<td>0.8353</td>
<td>157.2</td>
<td>52.16</td>
</tr>
<tr>
<td>0.3740</td>
<td>80.8</td>
<td>18.22</td>
<td>0.3336</td>
<td>144.5</td>
<td>21.71</td>
<td>0.8353</td>
<td>157.2</td>
<td>52.16</td>
</tr>
<tr>
<td>0.4243</td>
<td>94.1</td>
<td>21.18</td>
<td>0.4065</td>
<td>175.1</td>
<td>26.15</td>
<td>0.4627</td>
<td>198.8</td>
<td>29.50</td>
</tr>
<tr>
<td>0.5134</td>
<td>111.6</td>
<td>25.32</td>
<td>0.4627</td>
<td>198.8</td>
<td>29.50</td>
<td>0.5012</td>
<td>225.0</td>
<td>33.16</td>
</tr>
<tr>
<td>0.6589</td>
<td>127.0</td>
<td>29.55</td>
<td>0.5338</td>
<td>225.0</td>
<td>33.16</td>
<td>0.5932</td>
<td>252.8</td>
<td>36.61</td>
</tr>
<tr>
<td>0.7399</td>
<td>132.4</td>
<td>31.23</td>
<td>0.6321</td>
<td>252.8</td>
<td>36.61</td>
<td>0.8353</td>
<td>157.2</td>
<td>52.16</td>
</tr>
</tbody>
</table>

Table 1. Electric capacity changes at 1 Mc/sec (25°C).
Discussion

The curves in Fig. 1 are generally similar in shape to type IV isotherms, thus suggesting proportionality between ΔC and a. Actually (Fig. 2), for the system cyclo-C$_6$H$_{12}$-γ-Al$_2$O$_3$, the dielectric isotherm is given by a single straight-line; for the system with C$_6$H$_6$ there are two linear portions intersecting at $a=40.2$ mg/g, and in the case of CCl$_4$ a linear relationship is obeyed for $a>96.5$ mg/g. The occurrence of a discontinuity in the dielectric isotherm of C$_6$H$_6$ was first found by Thorp4, but not surely confirmed in later experiments by the same author5. He writes: “at such low sorptions the values of ΔC are very small, ... so little emphasis can be put on this break of the isotherm, although it does occur in the region of monolayer completion”6. In the present case, however, the use of a dielectric cell having a geometric capacity about ten times as large as that used by Thorp, has enabled us to bring the phenomenon to evidence with certainty.

The simple relationship first suggested by Argue and Maass7

$$\varepsilon = \sum_i \Phi_i \varepsilon_i,$$ \hspace{1cm} (1)

where $\varepsilon =$ apparent dielectric constant of the heterogeneous system, $\varepsilon_i =$ dielectric constant of i-th phase, $\Phi_i =$ volume fraction of the same phase, was repeatedly employed$^8-10$, although it was recognized by several authors11,12 to be of empirical nature only. Recently the usefulness of Bruggeman’s and Böttcher’s calculations13 of dielectric constants of heterogeneous systems formed with crystalline powders and gases (or liquids) has been emphasized14. By an extension of these treatments to the systems studied in this work, these can be considered as consisting of two phases: the adsorbate and the solid with residual void space (thus neglecting the contribution to the polarization from the vapour); then Bruggeman’s and Böttcher’s equations can be written respectively as follows:

$$\frac{\varepsilon_a - \varepsilon}{\varepsilon_a - \varepsilon_s} = (1 - \Phi_a) \left[\varepsilon/\varepsilon_a \right],$$ \hspace{1cm} (2)

$$\frac{\varepsilon - \varepsilon_s'}{3 \varepsilon} = \Phi_a \left(\frac{\varepsilon_a - \varepsilon_s'}{\varepsilon_a + 2 \varepsilon_s'} \right),$$ \hspace{1cm} (3)

where $\varepsilon =$ apparent dielectric constant of the heterogeneous system, $\varepsilon_s' =$ apparent dielectric constant of the adsorbent, $\varepsilon_a =$ dielectric constant of the adsorbate and $\Phi_a =$ fraction of total volume occupied by the adsorbate.

When $\varepsilon \cong \varepsilon_s'$, from Eq. (2) it follows

$$\varepsilon = \varepsilon_s' + \Phi_a (\varepsilon_a - \varepsilon_s').$$ \hspace{1cm} (4)

In turn, Eq. (3) can conveniently be given the form

$$\varepsilon = \varepsilon_s' + \frac{3}{2} \Phi_a (\varepsilon_a - \varepsilon_s' + (\varepsilon_a/2) (\varepsilon_s'/\varepsilon - 1))$$

which, applying the same condition, reduces to

$$\varepsilon = \varepsilon_s' + \frac{3}{2} \Phi_a (\varepsilon_a - \varepsilon_s').$$ \hspace{1cm} (5)

It can be noted that Eq. (4) is identical to Eq. (1) written for the two phases under consideration, while Eq. (5) differs from it by a factor 3/2. For the present systems, as well as for all those in which the adsorbed phase is apolar and consequently has a low value of the dielectric constant, the approximation $\varepsilon = \varepsilon_s'$ is quite acceptable.

Both Eq. (4) and (5) account for linear dielectric isotherms, if dielectric constant and density of the adsorbed phase remain constant. A behaviour of this type is shown by cyclo-C$_6$H$_{12}$, no characteristic point being detectable in coincidence of monolayer completion. For the other two systems, however, the attainment of complete monomolecular surface coverage8 is clearly indicated by the presence of breaks in the corresponding dielectric isotherms3,4. (The a_m values shown in Fig. 2 are in good agreement with those obtained from adsorption isotherms3).

According to the very simplified description of Eq. (4) and (5), the abrupt change in slope might be caused, all other conditions being unchanged, by variations of the adsorbate density or of its dielectric constant or of the electric field acting on molecules before and after monolayer completion. Generally such effects might be concurrent.

The assumption of a density change, which had already been shown not valid in other cases15, can
be considered as furthermore disproved by the present results, especially on account of the striking difference existing between the isotherms for cyclo-
C_6H_{12} and the other two. On the same ground, it seems possible to exclude that the effect might be mainly due to changes of the electric field. This latter hypothesis had been put forth principally because discontinuities in dielectric isotherms had been previously observed only with apolar vapours adsorbed on porous solids, while straight-line isotherms with no discontinuities had been obtained with non-porous adsorbents (e.g., butane on rutile16).

The starting portion of the CCl_4 dielectric isotherm, markedly differing from that of the other two, might be considered as an interesting indication of a “stepwise adsorption”17 taking place at very low surface coverages, which could not be sufficiently revealed by the “classic” adsorption isotherm3 because of the experimental conditions. It appears worth studying this particular point more deeply.

Finally, Eq. (4) and (5) have been employed to calculate the dielectric constants of adsorbate, over the capillary condensation range, after transformation into the more convenient forms

$$\varepsilon_a - \varepsilon_s' = \frac{\Delta C}{\Delta a} \cdot \frac{1000 d_L}{C_0 d_s'}$$

(6)

and

$$\varepsilon_a - \varepsilon_s = \frac{2}{3} \frac{\Delta C}{\Delta a} \cdot \frac{1000 d_L}{C_0 d_s'}$$

(7)

where a is expressed in mg/g; $d_s' =$ apparent density of adsorbent (for the Al_2O_3 sample employed, $d_s' = 1.008$); $d_L =$ density of adsorbate as a liquid; $C_0 =$ geometric capacity of the condenser-cell. The results are reported in Table 2, where α denotes the value of the slope $\Delta C/\Delta a$ calculated by the least square method; for comparison, the dielectric constants of the corresponding liquids and the literature d_L values used in the calculation are also reported in the table. It is seen that ε_a values obtained by Eq. (6) deviate more from those of the liquid state than those calculated by Eq. (7). The latter seems therefore preferable. The fact that the calculated values are higher than those for the liquids might be due, on one hand, to the adsorbate density being lower than that of the corresponding liquid (as reported in other cases18,19); and on the other hand to the contribution (at least in the case of C_6H_6 and CCl_4) of induced dipole moments.

<table>
<thead>
<tr>
<th>adsorbate</th>
<th>α</th>
<th>d_L^{20}</th>
<th>ε_a calc. $\frac{\Delta a}{\Delta a}$</th>
<th>ε_L^{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclo-hexane</td>
<td>0.2257</td>
<td>0.774</td>
<td>2.80</td>
<td>2.55</td>
</tr>
<tr>
<td>carbon tetrachloride</td>
<td>0.1405</td>
<td>1.585</td>
<td>2.96</td>
<td>2.66</td>
</tr>
<tr>
<td>benzene</td>
<td>0.2252</td>
<td>0.874</td>
<td>2.90</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Table 2. Dielectric constants of the adsorbate at 25°C.

17 B. H. DAVIS and C. PIERCE, J. Phys. Chem. 70, 1051 [1966].