100 db/cm. Wegen des hohen Wertes von \(\Gamma_0 \) erreicht man keine Gesamtverstärkung \(T < 0 \).

Ich danke Herrn Dr. K. J. SCHMIDT-TIEDEMANN für anregende Diskussionen, sowie den Herren D. RESTORFF und W. FUNK für ihre Mitarbeit bei den Experimenten.

Studies on Semiconducting Properties of Lead Sulphide and Lead Selenide Films*

A. Goswami and S. S. Koli

National Chemical Laboratory, Poona-8, India

(Z. Naturforsch. 21 a, 1462—1467 [1966]; received 14 April 1966)

Some studies have been made on the semiconducting properties viz. resistivity (\(\sigma \)), activation energy (\(\Delta E \)), Hall coefficient (\(R_H \)), mean free path (\(L \)), thermoelectric power (\(\alpha \)) etc. of PbS and PbSe films of thicknesses ranging from 1500 Å to 33,000 Å. The activation energies varied from 0.6 to 1.6 eV and 0.7 to 0.9 eV respectively for PbS and PbSe films depending on film thickness and temperature range. Thinner films had higher \(\Delta E \) values. The thermoelectric power not only varied but also changed its sign from positive to negative with increase of temperature. Thinner films had greater 2 than corresponding thicker films. The Hall coefficient and mobility increased particularly for PbSe films both with increase of film thickness and substrate temperature. The negative temperature coefficient of resistance slowly decreased and again increased passing through a minimum with rise of temperature. The semiconduction behaviour of thin films is better explained on the island structure model than by SONDHEIMER's theory.

Chalcogenides of lead in bulk form have been studied in detail by many workers\(^1\)–\(^9\) for their electrical, optical and other properties, since these materials have many applications in diverse fields. In the thin film-state, many investigations\(^10\)–\(^15\) have been made on the photoconducting properties of these compounds, but very few results\(^16\),\(^17\) are available on the other parameters. Here we report on a detailed investigation of the semiconducting properties of PbS and PbSe films.

Experimental

Lead sulphide was prepared by passing \(\text{H}_2\text{S} \) gas through a solution of lead nitrate (A. R.) in distilled water till the precipitation of PbS was complete. The precipitate was filtered, washed several times with \(\text{H}_2\text{S} \) water, then with warm distilled water to free from \(\text{H}_2\text{S} \) and finally with alcohol. The material was then dried in a vacuum desiccator and used for evaporation.

Lead selenide was prepared by melting the elements in atomic proportion (1:1) in vacuo in a sealed silica tube, gradually heating in a furnace to \(\approx 1000^\circ \text{C} \) (m. p. of PbSe 950 °C) for about six hours and cooling.

Lead sulphide and lead selenide were then evaporated from microconical silica baskets and condensed in vacuo (\(\approx 10^{-4} \text{ mm Hg} \)) on glass substrates of suitable dimensions (\(l/b = 3:1 \)). The film thickness was estimated from the difference in weight before and after deposition and from the known area assuming the density of the deposited film to be that of the bulk material.

* Communication No. 900 from National Chemical Laboratory, Poona-8, India.

6 W. W. SCANLON, Phys. Rev. 92, 1523 [1953].

7 W. W. SCANLON, Phys. Rev. 109, 47 [1958].

11 B. T. KOLMOGROF, Zh. Tekhn. Fiz. 18, 1456 [1948].

16 G. W. MAHLMAN, Phys. Rev. 103, 1619 [1956].

The experimental set-up for measuring different semiconducting parameters was similar to that described before by Goswami and Jog18. All measurements were carried out in vacuo unless otherwise stated. Resistances were measured by a.c. and d.c. methods both during heating and cooling cycles with the help of a universal AVO or Tesla bridge operating on 400 Hz as well as on d.c. voltage. The thermoelectric power was measured both by integral and differential methods.

In the former case the temperature of one end of the film was increased gradually with the help of a micro-heater whereas the other end was kept constant at appropriate temperature. In the latter case, the temperature at both the ends was increased, keeping a constant temperature gradient between them. General increase of temperature was facilitated by the use of an external heater. Hall coefficients were, however, measured in air in the manner described by Deokar and Goswami19.

Before starting the measurements, the deposited films were annealed well below the discontinuity temperature (T_d), the implications of which were pointed out previously by Goswami and Jog18. The mean values of several heating and cooling cycles for each specimen were taken for plotting the curves. Often a hysteresis type of loop was observed between heating and cooling which could be minimized by a better control of temperature. The maximum temperature of the measurements was always below the T_d temperature. Measurements were also repeated for different sets of films deposited more or less under the same conditions of evaporation.

Results

Before measuring the different semiconducting parameters such as resistivity, thermoelectric power, Hall coefficient etc. for any specimen a few preliminary experiments were made to see the effects of rate of deposition, film thickness, stress and strain etc. on the resistance of the film. These were found to be similar to those already observed in the case of lead telluride films20.

A. Resistivity ρ and Activation Energy ΔE

PbS films: The resistivity of thin films was found to be much higher than that of the bulk material. $\log R$ vs. $1/T$ curves were plotted for different heating and cooling cycles. In Fig. 1 it is seen that for a film of thickness 25 000 Å the resistance first increased with increase of temperature up to 135 °C (region “A’’), then decreased with the further rise of temperature (region “B”) up to the maximum temperature of our experiments (\approx 350 °C). During the cooling process the resistance closely followed the heating curve down to about 135 °C and continued to rise after that, but with a different slope (region “C’’). During further heating cycles without breaking the vacuum path BC was followed almost exactly. Thus path BC exhibits the semiconducting characteristics of the PbS film whereas path A appears to be due to the superposition of other effects, especially adsorption of gases. The activation energies measured in the linear portions of the curve (B and C) were about 1.48 and 0.6 eV respectively for a film of thickness 25 000 Å. Table 1 shows ΔE values for the B and C region corresponding to the four curves in Fig. 1. The lower activation energy in the C region, no doubt due to the extrinsic behaviour of the films, seems to be associated with defects and faults in the film-structure, whereas the higher values of ΔE in the B region are due to intrinsic characteristics of the samples. It is also interesting to note that in the B region ΔE was increasing with decreasing film thickness. The behaviour in the A region was found to be due to the adsorption of gases by the deposited layers as shown by different curves viz. A', A''... in Fig. 1, obtained under different conditions of vacuum.

PbSe films: Lead selenide films were annealed at about 325 °C in vacuo, below the T_d temperature (\approx 350 °C). Fig. 2 shows the variation of $\log R$ with $1/T$ for different film thickness. During the initial heating cycles regions A and B were again observed. The cooling curves, however, did not exactly follow the previous heating path and a hysteresis type of loop was observed in the temperature

Table 1. Variation of ΔE with thickness in different temperature regions for PbS films.

<table>
<thead>
<tr>
<th>Thickness Å</th>
<th>In B region ΔE</th>
<th>In C region ΔE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3100</td>
<td>1.684 eV</td>
<td>0.650 eV</td>
</tr>
<tr>
<td>7350</td>
<td>1.593 eV</td>
<td>0.592</td>
</tr>
<tr>
<td>19420</td>
<td>1.550 eV</td>
<td>0.550</td>
</tr>
<tr>
<td>25000</td>
<td>1.478 eV</td>
<td>0.535</td>
</tr>
</tbody>
</table>

19 V. D. Deokar and A. Goswami, Intern. Symp. on Basic Problems in Thin Film Physics, Clausthal, West Germany (Sept. 1965), Abstr. p. 54.

20 A. Goswami and S. S. Koli, Intern. Symp. on Basic Problems in Thin Film Physics, Clausthal, West Germany (Sept. 1965), Abstr. p. 53.
range between $30^\circ - 225^\circ C$. At higher temperatures, however, the loop was not appreciable. It was again confirmed that the behaviour in region “A” was due to adsorption effects and hence could be removed by heating in vacuo or keeping the films under dynamical vacuum for a longer period.

The activation energy varied from 0.7 to 0.9 eV for films of thickness varying from 50 000 Å to 1000 Å. It was also noticed that as for lead sulphide ΔE increased with decrease of film thickness.

Thermoelectric Power α

PbS films: Fig. 3 shows typical integral thermal e.m.f. vs. temperature difference curves for a film of thickness 33 000 Å (Curve 1). It is seen that the thermal e.m.f. increased gradually with rise of temperature difference, reaching a maximum, and then falling steeply to zero. With further increase of temperature difference the thermal e.m.f. changes its sign. During cooling a slightly different path (1’) is followed though similar in nature to that of heating (path 1). The thermal e.m.f. was slightly smaller during cooling than during heating. Fig. 4 shows the corresponding thermoelectric power for different temperature regions. It can be seen that the thermo-electric power changes sign when proceeding from the low temperature p-type to the high temperature n-type region. On cooling, the thermoelectric power changes its sign from negative to positive but the
inversion temperature did not necessarily coincide with that on heating.

It may be pointed out here that if the thermoelectric power was measured below the inversion temperature, the heating and cooling curves followed almost the same path. As can be seen from Fig. 5 the thermoelectric power increased with decrease of the film thickness. While studying the dependance of the thermal e.m.f. and the point of inversion on the cold junction temperature, it was noticed that with increase of cold junction temperature the maximum thermal e.m.f. and the inversion temperature shifted towards lower temperatures (Fig. 3).

Fig. 4. Variation of thermoelectric power with temperature for PbS and PbSe films.

PbSe films: Curve 2 of Fig. 4 shows the variation of α with temperature. The general features of the curve are similar to those of PbS films. The variation of the thermoelectric power with film thickness at temperatures below the inversion point was similar to that of PbS (cf. Fig. 5).

Fig. 5. Variation of thermoelectric power with temperature (below inversion temperature) for different thicknesses of PbS films.

Temperature Coefficient of Resistance (TCR)

The TCR of these films defined as

$$ TCR = (1/R) \cdot (dR/dT) $$

was calculated both for PbS and PbSe films. Fig. 6 shows the variation of TCR with temperature. The nature of the curves remained the same for other film thicknesses though the actual values differed to some extent. The maximum and minimum values of the TCR curves appeared to be dependent upon the rate of evaporation and the conditions of deposition.

Fig. 6. Variation of TCR with temperature for PbS and PbSe films.

HALL Coefficient R_H, Mobility μ_H and Mean Free Path l_0

The HALL coefficient of lead selenide films deposited at room temperature as well as at higher substrate temperature was measured in a manner described before and the HALL mobility was calculated by using the relation $\mu_H = \sigma R_H$. Table 2 shows R_H, σ, and μ_H for films of different thicknesses deposited more or less under the same conditions. It is clearly seen that the mobility decreased in each case with decrease of film thickness. However, the higher substrate temperature favoured higher mobility as seen from an increase both in

<table>
<thead>
<tr>
<th>T</th>
<th>Thickness A</th>
<th>σ Ω cm</th>
<th>R_H cm2</th>
<th>μ_H cm2/Volt sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>27°C</td>
<td>31400</td>
<td>15.11</td>
<td>0.502</td>
<td>7.573</td>
</tr>
<tr>
<td></td>
<td>27700</td>
<td>14.80</td>
<td>0.496</td>
<td>7.345</td>
</tr>
<tr>
<td></td>
<td>17800</td>
<td>14.50</td>
<td>0.480</td>
<td>6.987</td>
</tr>
<tr>
<td></td>
<td>15360</td>
<td>13.30</td>
<td>0.390</td>
<td>4.550</td>
</tr>
<tr>
<td></td>
<td>10020</td>
<td>11.70</td>
<td>0.285</td>
<td>3.263</td>
</tr>
<tr>
<td></td>
<td>5040</td>
<td>9.17</td>
<td>0.149</td>
<td>1.338</td>
</tr>
<tr>
<td>80°C</td>
<td>12200</td>
<td>15.20</td>
<td>0.952</td>
<td>14.460</td>
</tr>
<tr>
<td></td>
<td>8510</td>
<td>13.35</td>
<td>0.892</td>
<td>11.980</td>
</tr>
<tr>
<td></td>
<td>6730</td>
<td>11.35</td>
<td>0.866</td>
<td>9.830</td>
</tr>
<tr>
<td></td>
<td>3910</td>
<td>10.10</td>
<td>0.554</td>
<td>5.350</td>
</tr>
</tbody>
</table>

Table 2. R_H, σ and μ_H of PbSe films (p Type) deposited at different substrate temperatures T.
HALL coefficient and conductivity. The latter effect was reported in previous papers20, 21.

The mean free path of the charge carriers at different temperatures was obtained graphically for PbSe films from ϱd vs. d curves as was done previously for PbTe films20. The Fig. 7 shows ϱd vs. d curves for different temperatures and Table 3 shows the variation of the mean free path with temperature. The mean free path decreases with increasing temperature. It is possible to calculate the mobility from l_0 by using an expression based on the LORENTZ–SOMMERFELD theory,

$$\mu = \frac{l_0 e}{225 \sqrt{2 \pi m^* k T}} \text{ cm}^2 \text{ Vs}$$

where the symbols have their usual meaning. Since l_0 is a function of temperature, hence $\mu \sim T^{-n}$ where n is a characteristic of the material. The value of n calculated from log μ vs. log T plots was found to be approximately 4 for PbSe films.

![Fig. 7. Variation of ϱd with d at different temperatures for PbSe films.](image)

Table 3. Variation of mean free path l_0 with temperature T.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>l_0 (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>3.86×10^{-5}</td>
</tr>
<tr>
<td>175</td>
<td>1.42×10^{-5}</td>
</tr>
<tr>
<td>225</td>
<td>1.19×10^{-5}</td>
</tr>
<tr>
<td>250</td>
<td>0.74×10^{-5}</td>
</tr>
</tbody>
</table>

Discussion

Previous studies of thin PbTe films revealed that some of the semiconducting parameters i.e. resistivity, activation energy, HALL coefficient, mobility, TCR and thermoelectric power etc. are considerably dependent on film thickness, substrate temperature and deposition conditions. The present study confirms these findings for PbS and PbSe films.

SONDHEIMER’s theory22 qualitatively explains the increase of resistivity with the decrease of film thickness through the fact of lower mean free path, but it is inadequate when studied quantitatively. As already pointed out in our previous paper20 real films contain voids, discontinuities, defects and imperfections such as stacking faults, twin structures, intercrystalline boundaries etc. at least during the initial stage of their growth. At a later stage, however, these deposited layers may merge into a continuous film eventually developing surface asperities depending upon the evaporation conditions. LUCAS23 has already pointed out that because of the presence of surface unevenness the resistivities of films are considerably higher than that of the corresponding bulk material.

The conductivity σ, in the case of metallic films, based on the island structure theory of NEUGEBAUER24 is given by the expression

$$\sigma = A \sqrt{\frac{2 m \Phi}{\hbar^2 d'}} \cdot \exp\left\{-\frac{4 \pi d'}{h} \sqrt{2 m \Phi}\right\} \cdot B \exp\left\{-\frac{e^2/\varepsilon r}{k T}\right\}$$

where A and B are constants. According to WILSON’s theory B depends upon the mean free path l_0.

Φ — the potential barrier between two islands,

e — the electronic charge,

m — the electronic mass,

r — the average radius of an island,

d' — the distance between islands,

k — BOLTZMANN’s constant,

h — PLANCK’s constant,

ε — dielectric constant.

The above formula may be modified in case of thin films of semiconductors by taking into account the energy required to excite an electron from the valence to the conduction band. Then

$$\sigma = A' \sqrt{\frac{2 m \Phi}{\hbar^2 d'}} \cdot \exp\left\{-\frac{4 \pi d'}{h} \sqrt{2 m \Phi} - \frac{2 e^2/\varepsilon r + A E_g}{2 k T}\right\}$$

21 V. D. DEOKAR and A. GOSWAMI, Indian J. Pure Appl. Phys., in press.

22 E. H. SONDHEIMER, Advan. Phys. 1, 1 [1952].

23 M. S. P. LUCAS, J. Appl. Phys. 36, 5 [1961].

24 C. A. NEUGEBAUER, American Vacuum Soc., Trans. of 9th Vacuum Symp., California, New York 43 [1962].
From the above expressions, it is seen that the observed increase of ΔE with the decrease of film thickness can be explained in a better way through the exponential term of Eq. (3), because of the increase of d' and also the decrease of r with decrease of film thickness. The explanation for the variation of the TCR with temperature in the present case is similar to that pointed out for lead telluride films 20.

The peculiar features of the thermoelectric power can be explained from the general expression of α given by

$$\alpha_{n, p} = -\frac{k}{e} \frac{n \mu_e [\frac{1}{2} - s] + \ln(N_0/n) - p \mu_n [\frac{1}{2} - s'] + \ln(N_n/p)}{n \mu_e + p \mu_n}.$$ \hspace{1cm} (4)

It is well known that for a p-type material the Fermi level will rise with increase of temperature, attaining a maximum value eventually leading to a maximum value of the thermoelectric power. The change of sign of α from positive to negative at higher temperature suggested that the contribution to the thermoelectric power of the first term in Eq. (4) is stronger than that of the second one. The reverse is the case below $135 - 175 \, ^{\circ}\mathrm{C}$ depending upon the thickness of the film. Since no intentional impurities were introduced into the specimens, the change of sign of α appears to be due to an increase of electron mobility as compared with hole mobility, the electron and hole concentrations being nearly equal (i.e. in the intrinsic range) at higher temperatures. A similar behaviour was also observed by Avafa 25 et al., in the case of bulk PbS. It has already been shown that the electron mobility is greater than the hole mobility for chalcogenides of lead 26.

In the mobility relation $\mu \sim T^{-n}$, the value of n was found to vary from 2.5 to 3 as observed by many workers $^{2-6}$ for bulk material. We, on the other hand, have observed higher value of n ($\gg 4$) for PbSe films. This increase appears to be due to the presence of faults and defects invariably associated with films. Smirnov 27 whilst studying n for PbSe (bulk) also concluded that the high value of $n \gg 4$ obtained by him was due to imperfections present in the crystals.

The increase of R_H as well as of μ with an increase in the substrate temperature has already been pointed out by Deokar and Goswami 21 to be due to the removal of some of the defects present in the deposits. It is not easy to see the cause for the low values of the Hall coefficients of thin films compared to bulk material. It is however likely that these may arise out of the cancellation of effects of majority and minority carriers.
