To calculate the contribution of this diagram, we have used for the (j z !N*) -vertex the isobaric model

\[F_3(q^2) = \exp - \left(\frac{q^2}{\pi} + \frac{\delta_1(\sigma^2)}{4\pi} \int_{4\pi}^{\infty} \delta_1(\sigma^2) \, d\sigma^2 \right) \]

(7)

where \(\delta_1(\sigma^2) \) is the d-wave \(\pi \pi \)-scattering phase shift.

At the resonance there holds

\[\delta_1(q^2) = \pi/2 \quad (q^2 = m_0^2) \]

With the assumptions used in 13–15 we find that

\[\Delta_{\text{theoret.}} \sim -0.079 \quad \text{for} \quad t = q^2 = -19.5 \, f^2 \]

The experiments 16, 17 give

\[\Delta_{\text{exp.}} = -0.094 \pm 0.046 \quad \text{for} \quad q^2 = -19.5 \, f^2 \]

For the polarization (projection on a plane perpendicular to the coplanar reaction plane) we find a maximum value of \(-1.2\%\) for electron energies \(E_1 = 1.2 \, \text{GeV} \) and \(\cos \theta_{\text{CMS}} = \pi/2 \). The experimental results 18 are of the same order.

Electron Paramagnetic Resonance of Eu²⁺ in CdF₂

H. J. GLÄSER and D. GEIST

Institut für Angewandte Physik der Technischen Hochschule Clausthal, Germany

(Z. Naturforsch. 28 a, 842–844 [1963]; received 6 May 1963)

The paramagnetic resonance spectrum of Eu²⁺ in CdF₂ (about 0.1 mole % Eu) shows the same characteristics as in other alkaline earth fluorides with a CaF₂-type lattice 1–4.

The angular variation shows that the Eu²⁺-ions in CdF₂ are in an electric field of cubic symmetry occupying Cd sites. The ground state of the Eu²⁺-ions is \(^{8}S_7/2 \). For this case Baker, Bleaney and Hayes 2 give a spin Hamiltonian of the following form:

\[H = g \beta \mathbf{H} \cdot \mathbf{S} + A \mathbf{I} \cdot \mathbf{S} \]

\[+ B_4(O_4^0 + 5 O_4^4) + B_6(O_6^0 - 21 O_6^4) \]

Taking this spin Hamiltonian, the splitting of the \(^{8}S_7/2 \) ground state in a cubic crystal field (8-fold coordination) and with hyperfine interaction in the magnetic field \(H \) was calculated 5, 4, 2. The magnetic dipole transitions \(\Delta M = \pm 1 \) (without hyperfine interaction) are given by

\[
M = \pm 7/2 \rightarrow \pm 5/2 \quad [\text{abbreviated: } \pm 7/2] \quad : \quad h \tau = \Delta \varepsilon_{\pm 7/2}(H) = g \beta H \pm 7/2 + Q_7 \]

\[
Q_7 = \pm 20 p b_4 \pm 6 q b_6 + (-1 + 114 q - 345 q^2 + 84 q^3) \times 10 b_2^2 (g \beta H \pm 7/2) \]

\[
M = \pm 5/2 \rightarrow \pm 3/2 \quad [\pm 5/2] \quad : \quad h \tau = \Delta \varepsilon_{\pm 5/2}(H) = g \beta H \pm 5/2 + Q_5 \]

\[
Q_5 = \mp 10 p b_4 \mp 14 q b_6 + (-92 q + 455 q^2 - 441 q^3) \times 20 b_2^2 (3 g \beta H \pm 5/2) \]

(1)

\[M = \pm 3/2 \rightarrow \pm 1/2 \quad [\pm 3/2]:\]

\[h\nu = \Delta E_{\pm 3/2}(H) = \gamma \beta H_{\pm 3/2} + Q_3, \]

\[Q_3 = \mp 12 p b_4 \pm 14 q b_6 + (1 + 78 \varphi - 423 \varphi^2 + 588 \psi) 10 b_4^2/(\gamma \beta H_{\pm 3/2}); \]

\[M = -1/2 \rightarrow +1/2 \quad [1/2]:\]

\[h\nu = \Delta E_{\pm 1/2}(H) = \gamma \beta H_{\pm 1/2} + Q_1, \]

\[Q_1 = (7 - 462 \varphi + 2175 \varphi^2 - 2940 \psi) 5 b_4^2/(2 \gamma \beta H_{1/2}), \]

where \[b_4 = 60 B_4; \quad b_6 = 1260 B_6; \quad \varphi = F m^2 + m^2 n^2 + n^2 p^2 \quad (l, m, n = \text{direction cosines}); \]

\[p = 1 - 5 \varphi; \quad 2 q = 2 - 21 \varphi + 231 \psi. \]

We must add to Eq. (1) the following terms for hyperfine interaction:

\[A m + (A^2/4 h\nu) \{ F(M) f(-m) + F(-M + 1) f(m) - F(-M) f(m) \}
\]

\[+ F(M - 1) f(-m) h\nu[\Delta E_{M+1}(H_M)]^{-1} - F(M - 1) f(-m), \]

where \[F(M) = (J + M)(J - M + 1) \quad \text{and} \quad f(m) = (I + m)(I - m + 1). \]

\[F = \text{electron spin}; \quad I = \text{nuclear spin}; \quad (\text{in our case } J = S = 7/2, I = 5/2). \]

With Eqs. (1) and (2) we obtain the following line positions for the transitions \(\Delta M = \pm 1, \Delta m = 0 \)

\[M = \pm 7/2, m: \]

\[g \beta H_{\pm 7/2, m} = h\nu - Q_7 - A m - (A^2/4 h\nu) \quad \{14(35 - 4 m^2) - 12(35 - 4 m^2 - 4 m) h\nu[\Delta E_{\pm 3/2}(H_{\pm 7/2})]^{-1}; \]

\[M = \pm 5/2, m: \]

\[g \beta H_{\pm 5/2, m} = h\nu - Q_5 - A m - (A^2/4 h\nu) \quad \{24(35 - 4 m^2) - 15(35 - 4 m^2 + 4 m) h\nu[\Delta E_{\pm 3/2}(H_{\pm 5/2})]^{-1} \}
\]

\[- 7(35 - 4 m^2 \pm 4 m) h\nu[\Delta E_{\pm 7/2}(H_{\pm 5/2})]^{-1}; \]

\[M = \pm 3/2, m: \]

\[g \beta H_{\pm 3/2, m} = h\nu - Q_3 - A m - (A^2/4 h\nu) \quad \{30(35 - 4 m^2) - 16(35 - 4 m^2 + 4 m) h\nu[\Delta E_{\pm 3/2}(H_{\pm 3/2})]^{-1} \}
\]

\[- 12(35 - 4 m^2 \pm 4 m) h\nu[\Delta E_{\pm 5/2}(H_{\pm 3/2})]^{-1} \}; \]

\[M = 1/2, m: \]

\[g \beta H_{1/2, m} = h\nu - Q_1 - A m - (A^2/4 h\nu) \quad \{32(35 - 4 m^2) - 15(35 - 4 m^2 - 4 m) h\nu[\Delta E_{\pm 3/2}(H_{1/2})]^{-1} \}
\]

\[- 15(35 - 4 m^2 \pm 4 m) h\nu[\Delta E_{\pm 5/2}(H_{1/2})]^{-1} \}. \]

We see that Eq. (3) in which fine structure splitting and hyperfine structure splitting are considered up to terms of 2. order in \(b_4 \) and \(A \) are sufficient to explain the spectrum, especially the angular variation. The constants of Eq. (3), i.e. \(g, A(\text{Eu}^{151}), A(\text{Eu}^{153}), b_4 \) and \(b_6 \) were calculated from the spectrum for \(H || [100] \)-direction and verified with Eq. (3) on the spectrum for \(H || [111] \)-direction.

The spectrum of Eu\(^{2+}\) in CdF\(_2\) for \(H || [100] \)-direction is shown in Fig. 1. The hyperfine lines of the transition \(M = -1/2 \rightarrow +1/2 \) are overlapped by the spectrum of manganese unintentionally present in the crystal.

In Table 1 the EPR-constants of the system CdF\(_2\): Eu are compared with published values of EPR-constants of the Eu\(^{2+}\)-ion in alkaline earth fluorides having the

Fig. 1. The EPR-spectra of Eu\(^{2+}\) and Mn\(^{2+}\) in CdF\(_2\) for \(H || [100] \)-direction.
same lattice structure (space group Oh^5) as CdF$_2$. We are not surprised that our constant b_4 describing the cubic part of the lattice potential agrees with that found by Rytter1 in the system CaF$_2$: Eu. Both host lattices have nearly equal lattice dimensions. Baker et al.2 received a value for b_4 in the system CaF$_2$ somewhat higher. But we believe Rytter did his measurements contrary to Baker et al. at a temperature of 300 °K. Table 1 shows that the values b_4 for the systems SrF$_2$: Eu and BaF$_2$: Eu are always higher at low temperatures. This can be explained by shrinkage of the lattice3.

The hyperfine constants A(Eu151) and A(Eu153) in CdF$_2$ are larger than in CaF$_2$. After van Wieringen8 this means the covalent part of bonding to be greater in CaF$_2$ than in CdF$_2$.

The widths of the hyperfine structure lines of the isotop Eu151 in CdF$_2$, measured between the turning points of the lines, are (12 ± 1) G for the transitions $M = \pm 7/2 \rightarrow \pm 5/2$, (10 ± 1) G for $M = \pm 5/2 \rightarrow \pm 3/2$ and (7 ± 1.5) G for $M = \pm 3/2 \rightarrow \pm 1/2$. The line width of the transition $M = -1/2 \rightarrow +1/2$ could not be measured because of the overlapping Mn-spectrum.

We also noticed that the line widths are dependent on the angle. The lines are relatively broad, but this can be explained by unresolved superhyperfine interaction of the 8 fluor ligands with the electron spin of the Eu$^{2+}$-ion. Vinokurov et al.4 published a line width of 6 G for the hyperfine structure line of Eu$^{2+}$ in BaF$_2$ and SrF$_2$ at a temperature of 77 °K. This conforms with our EPR-measurements7 of manganese in CdF$_2$ compared with several publications8,9 about manganese in alkaline earth fluorides which show that the SHF-interaction at room temperature is larger in CdF$_2$ than in alkaline earth fluorides. The product of line width and line height yields the theoretically expected proportions of the line intensities for these transitions.

Acknowledgements

We are grateful to Professor Dr. J. Jaumann for making available the facilities of the II. Physikalisches Institut der Universität zu Köln, Germany; to the Deutsche Forschungsgemeinschaft, Bad Godesberg, for providing some measuring equipment and to Dr. G. Römel for suggestions concerning this work.

Table 1. EPR data for the Eu$^{2+}$-ion in some single crystals of the space group Oh^5. Simultaneous change of the signs of A_1 and b_6 leaves the line positions unaltered. * This paper.

<table>
<thead>
<tr>
<th>Host lattice</th>
<th>Nearest neighbour distance [Å]</th>
<th>Frequency [GHz]</th>
<th>Temperature [°K]</th>
<th>g</th>
<th>A(Eu151)</th>
<th>A(Eu153)</th>
<th>b_4</th>
<th>$-b_6$</th>
<th>ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdF$_2$</td>
<td>2.33</td>
<td>9</td>
<td>300</td>
<td>1.988 \pm 0.002</td>
<td>36.1 \pm 0.47</td>
<td>15.95 \pm 0.47</td>
<td>55.5 \pm 0.25</td>
<td>0.28 \pm 0.2</td>
<td>*</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>2.361</td>
<td>9</td>
<td>90</td>
<td>1.9927 \pm 0.001</td>
<td>34.1 \pm 0.1</td>
<td>15.1 \pm 0.1</td>
<td>55.6</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>CaF$_2$</td>
<td>2.361</td>
<td>24</td>
<td>90</td>
<td>1.989 \pm 0.002</td>
<td>34.5 \pm 0.2</td>
<td>15.3 \pm 0.4</td>
<td>57.9 \pm 0.2</td>
<td>0.5 \pm 0.2</td>
<td>2</td>
</tr>
<tr>
<td>SrF$_2$</td>
<td>2.54</td>
<td>40</td>
<td>300</td>
<td>1.9922 \pm 0.0005</td>
<td>33.9 \pm 0.3</td>
<td>15.1 \pm 0.3</td>
<td>44.9 \pm 0.5</td>
<td>0.24 \pm 0.5</td>
<td>3</td>
</tr>
<tr>
<td>SrF$_2$</td>
<td>2.54</td>
<td>40</td>
<td>77</td>
<td>1.993 \pm 0.001</td>
<td>33.8 \pm 0.6</td>
<td>15.2 \pm 0.6</td>
<td>46.8 \pm 0.6</td>
<td>0.2 \pm 0.6</td>
<td>4</td>
</tr>
<tr>
<td>BaF$_2$</td>
<td>2.663</td>
<td>40</td>
<td>300</td>
<td>1.9926 \pm 0.0005</td>
<td>35.5 \pm 0.3</td>
<td>15.0 \pm 0.3</td>
<td>36.0 \pm 0.7</td>
<td>0 \pm 0.7</td>
<td>3</td>
</tr>
<tr>
<td>BaF$_2$</td>
<td>2.663</td>
<td>40</td>
<td>77</td>
<td>1.993 \pm 0.001</td>
<td>33.5 \pm 0.3</td>
<td>14.95 \pm 0.6</td>
<td>36.7 \pm 0.6</td>
<td>0.067 \pm 0.6</td>
<td>4</td>
</tr>
</tbody>
</table>

7 To be published.
9 W. Low, Phys. Rev. 105, 793 [1957].