The Influence of the \(f_0 \) Meson in the Two-Photon Exchange on the Relative Ratio of \(e^-p \) to \(e^+p \) and the Polarization of the Recoil Protons in Elastic Electron-Proton Scattering

R. Rodenberg

Institut für Theoretische Physik der Universität Frankfurt/M. (Z. Naturforsch. 20a, 841—842 [1965]; received 4 May 1965)

In a former paper 1 we have calculated the two-photon exchange contributions in elastic (\(e,p \))-scattering processes. With this result we have calculated the correction term in \(z^2 \) to the Rosenbluth formula (interference term of the one- and two-photon exchange amplitude) and that to the proton-antiproton annihilation in an electron-positron pair. Using the procedure given by Heann and Leader 2, an expansion of the photon-nucleon vertex was given in terms of the Compton scattering amplitude for the proton. Because one can neglect the cut in the s-plane 3 we have considered dispersion relations in the \(t \)-channel only. The corrections to the Rosenbluth formula and those to the \(p \bar{p} \) annihilation into an \(e^-e^+ \)-pair are smaller by a factor \(z \) than the contributions of the one-photon exchange diagram; so we got a deviation of \(\sim 1.5 \% \) for a point nucleon. One can only have a possible influence in the resonances of the Compton scattering amplitude. Let \(A_0 \) be the contribution of the one-photon exchange amplitude and \(A_C \) that for the two-photon case. Then near the resonance energy \(\omega_R \approx 300 \text{ MeV} \) for Compton scattering \(A_C \) is predominantly imaginary, being just the shadow of the channel for the photon meson production in the resonant 3-3 channel, as Dreil, Rudermann 4 and Furry 5 have shown. Therefore \(A_C \) is approximately \(\pi/2 \) out of phase with \(A_0 \), a real potential scattering term in Born approximation, and the interference term in

\[
\frac{d\sigma}{d\Omega} \sim |A_0 + z^2 A_C|^2
\]

is actually very small 7,8.

Flamm and Kümmer 9 have calculated the influence of \(A_C \) by introducing a tensor resonance model for Compton scattering. The result is, that the maximal deviation from the straight line behaviour as a function of \(\tan^2(\theta/2) \) is 11

\[
A(t) + B(t) \tan^2(\theta/2) \]

appears only at very small scattering angles \(\theta \).

The deviation from the Rosenbluth formula comes out to be \(\sim 10 \% \) for an impulse transfer of \(t = -30 \text{ f}^{-2} \) and small \(\theta \) and the assumption, that the coupling constants used in this model are of the order of 1. We find 3, that the deviations from (2) give a correction of \(7 \% \) for \(t = -30 \text{ f}^{-2} \) and \(\theta = 5 \degree \) and the \(f_0 \) meson in the intermediate state, using dispersion relation methods.

But if we introduce the Pomeranchuck trajectory 12 for the \(f_0 \) meson, the correction amounts to be 12%. For the coupling constants we have assumed \(f_{e^+e^-} = f_{e^-e^+} \) and \(f_{e^+e^-} = f_{e^-e^+} \) in both cases.

In order to get quantities for a better discussion in experiments and to have a direct measure for the contribution of \(A_C \), we have calculated from (1) the relative ratio

\[
A = \frac{\sigma_{e^-p} - \sigma_{e^+p}}{\sigma_{e^-p} + \sigma_{e^+p}} = 2 \frac{\text{Re} A^*_{\bar{p}} A_C}{|A_0|^2} \]

and the polarization \(P \) of the recoil protons in the elastic (\(e,p \))-scattering processes, using unpolarized electrons 8,13

\[
P = \frac{\text{Tr.} (M^* \sigma M)}{\text{Tr.} (M^* M)}. \]

\(M \) denotes the transition matrix, \(\sigma \) the Pauli matrices and \(\sigma \) the spin direction of the recoil proton (\(\sigma_z = 1 \)).

Expanding the S-matrix in powers of \(z \), we get

\[
S = 1 + i M_4 + i M_4 + \ldots, \]

where \(M_4 \) corresponds to the one-photon exchange term \(A_B \) (hermitian!) and \(M_4 \) to the \(A_C \). To lowest order in \(z \), the polarization is then given by

\[
P = 2 \left(1 + \frac{\text{Tr.} (M_4 (\sigma \bar{\sigma} \sigma M_4)}{\text{Tr.} (M^* M_4)} \right). \]

In order to calculate the \(M_4 \) resp. \(A_C \), the unitarity condition, calculated for the channels given in Fig. 1, was used.

3 S. D. Dreil and S. Furry, Phys. Rev. 113, 741 [1959].
7 S. D. Dreil, Form Factors of Elementary Particles, Proc. Intern. School of Physics, Enrico Fermi, Course XXVI, p. 206/207.
To calculate the contribution of this diagram, we have used for the \((\pi N N^*)\)-vertex the isobaric model of Gourdin and Salin, who calculated the photo production processes.

Further, to calculate \(\text{Im}\, M_4\) for the channels given in Fig. 1, a technique similar to that given in 13 was used. To obtain the form factor in the \((\gamma N\pi)\)-vertex, the \(f_0\) resonance was introduced and for the pion form factor a subtracted dispersion relation 7 was used, viz.:

\[
F_\pi(q^2) = \exp \left[\frac{q^2}{\pi} \int_{4m^2}^{\infty} \frac{\delta_1(\sigma^2)}{\sigma^2(q^2-\sigma^2-i\epsilon)} \right],
\]

where \(\delta_1(\sigma^2)\) is the d-wave \(\pi\)-scattering phase shift.

At the resonance there holds

\[
\delta_1(q^2) = \pi/2 \quad (q^2 = m_{f_0}^2).
\]

With the assumptions used in 13–15 we find that

\[
\mathcal{A}_{\text{theoret.}} = -0.079 \quad \text{for} \quad q^2 = -19.5\,f^{-2}.
\]

The experiments 16, 17 give

\[
\mathcal{A}_{\exp.} = -0.094 \pm 0.046 \quad \text{for} \quad q^2 = -19.5\,f^{-2}.
\]

For the polarization (projection on a plane perpendicular to the coplanar reaction plane) we find a maximum value of \(-1.2\%\) for electron energies \(E_e = 1.2\,\text{GeV}\) and \(\cos \theta = \frac{t}{g^2}\). The experimental results 18 are of the same order.

Electron Paramagnetic Resonance of \(\text{Eu}^{2+}\) in \(\text{CdF}_2\)

H. J. Gläser and D. Geist

Institut für Angewandte Physik der Technischen Hochschule Clausthal, Germany

(Z. Naturforsch. 28a, 482–484 [1965]; received 6 May 1965)

The paramagnetic resonance spectrum of \(\text{Eu}^{2+}\) in \(\text{CdF}_2\) (about 0.1 mole % Eu) shows the same characteristics as in other alkaline earth fluorides with a \(\text{CaF}_2\)-type lattice.

The angular variation shows that the \(\text{Eu}^{2+}\)-ions in \(\text{CdF}_2\) are in an electric field of cubic symmetry occupying \(\text{Cd}\) sites. The ground state of the \(\text{Eu}^{2+}\)-ions is \(8S_{7/2}\). For this case Baker, Bleaney, and Hayes 2 give a spin Hamiltonian of the following form:

\[
H = g\beta H \cdot S + A I \cdot S + B_4(O_4^2 + 5O_4 + O_6^2 - 21O_6^2).
\]

Taking this spin Hamiltonian, the splitting of the \(6S_{7/2}\) ground state in a cubic crystal field (8-fold coordination) and with hyperfine interaction in the magnetic field \(H\) was calculated 2, 4, 5. The magnetic dipole transitions \(\Delta M = \pm 1\) (without hyperfine interaction) are given by

\[
\begin{align*}
M = \pm 7/2 &\rightarrow \pm 5/2 \quad \text{[abbreviated: } \pm 7/2]\quad : \quad h\nu = \Delta E = \pm 7/2(H) = g\beta H \pm 7/2 + Q_1, \\
Q_1 &= \pm 20 p b_4 \pm 6 q b_6 + (-1 + 114 \varphi - 345 \varphi^2 + 84 \psi) 10 b_4^2/(g\beta H \pm 7/2); \\
M = \pm 5/2 &\rightarrow \pm 3/2 \quad \text{[}\pm 5/2]\quad : \quad h\nu = \Delta E = \pm 5/2(H) = g\beta H \pm 5/2 + Q_5, \\
Q_5 &= \pm 10 p b_4 \pm 14 q b_6 + (-92 \varphi + 455 \varphi^2 - 441 \psi) 20 b_4^2/(3g\beta H \pm 5/2).
\end{align*}
\]
