Recently the organic complexes of trivalent rare earths have attracted considerable attention as possible laser materials, where optical pumping can be conveniently carried out resulting in a relatively high fluorescence yield. All of these studies involved complexes having oxygens as coordinating atoms. In our search for ligands containing atoms other than oxygens and preferably nitrogens as coordination centers we have previously shown the intramolecular energy transfer from 2,2'-dipyridyl molecules to the coordinated Sm³⁺, Eu³⁺, Tb³⁺ and Dy³⁺ to give rise to line fluorescence characteristics of these coordinated metal ions. Similar fluorescence was observed in the rare-earth-phenanthroline system.

It was of interest to investigate the analogous 2,2',2'-'-terpyridyl complexes and in this report preliminary observations on the fluorescence characteristics of Eu³⁺ and Tb³⁺ terpyridyl complexes are presented. The absorption spectra of the methanolic solutions of mono-terpyridyl complexes of lighter lanthanides are described elsewhere and those of heavier lanthanides will be reported soon.

Fluorescence of the Solid Chelates

By exciting the terpyridyl chelates of Eu³⁺ and Tb³⁺ with long-wave ultraviolet light, the characteristic emissions of the coordinated ions are observed and the data are presented in Table 1. Undoubtedly the fluorescence of these chelates resulted due to the intramolecular transfer of the absorbed energy by the ligand to the central metal ions. According to the present concept of intramolecular energy transfer mechanism, the energy absorbed in the singlet state of the ligand crosses over to the triplet level from where the energy migrates to a low lying 4f-level of the rare earth ion. The transferring level according to Freyman and Crosby is some higher triplet level than the one from which the phosphorescence originates.

The emission spectra of Eu(Terp)Cl₃·H₂O and Eu(Terp)₂Cl₃·4H₂O (Terp = terpyridyl molecule) consist of a large number of lines. The transitions ΔD₀ –> F₂ and ΔD₀ –> F₂ of Eu³⁺ in these chelates show a group of three and a group of four lines respectively. The observed splitting of F₁ may be compared to the similar splitting in europium naphthalate and that of F₂ to europium-tris-dibenzoylemethide. A slight shift of these transitions towards higher wavenumbers was noted in the case of europium-bis-terpyridyl chloride chelates. A rough comparison of the ΔD₀ –> F₂ transition in europium chelates with neutral nitrogen containing ligands shows a linear relationship of the intensity with the number of coordinated nitrogens. It is also remarkable that the intensity of the ΔD₀ –> F₂ transition in the case of dipyridyl and terpyridyl complexes is higher than in the phthalate and naphthalate complexes. It is possible that the energy transfer through a Eu-O ionic bond is less efficient than a covalent europium-ligand bond. We assume that the intensification of ΔD₀ –> F₂ transitions in dipyridyl and terpyridyl complexes is possibly due to a slight intermixing of the triplet state of the ligands with the ΔD₀ and ΔD₁ level of Eu³⁺.

The strong green fluorescence (ΔD₁ –> ΔD₂) transition of Tb(Terp) (NO₃)₃ has also been examined and the transitions originating from the ΔD₁ level of Tb³⁺ (4F) and terminating at the F multiplets viz. F₆, F₅, F₄, F₃ and F₂ have been identified (Table 1).

Table 1. Details of fluorescence emission of Eu³⁺ and Tb³⁺
derived from terpyridyl complexes in the solid state at room temperature.

<table>
<thead>
<tr>
<th>Chelates</th>
<th>Observed fluorescence line (wavenumber in cm⁻¹)</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu(Terp)Cl₃·H₂O</td>
<td>16835</td>
<td>⁵D₀ → ⁷F₁</td>
</tr>
<tr>
<td></td>
<td>16181</td>
<td>⁵D₀ → ⁷F₂</td>
</tr>
<tr>
<td></td>
<td>16129 (Sh)</td>
<td>⁵D₀ → ⁷F₃</td>
</tr>
<tr>
<td></td>
<td>15380 a</td>
<td>⁵D₀ → ⁷F₄</td>
</tr>
<tr>
<td>16892</td>
<td>16207</td>
<td>⁵D₀ → ⁷F₃</td>
</tr>
<tr>
<td></td>
<td>15380 a</td>
<td>⁵D₀ → ⁷F₃</td>
</tr>
<tr>
<td>Tb(Terp)(NO₃)₃</td>
<td>14390 a</td>
<td>⁵D₀ → ⁷F₄</td>
</tr>
<tr>
<td></td>
<td>20284</td>
<td>⁵D₁ → ⁷F₆</td>
</tr>
<tr>
<td></td>
<td>18349</td>
<td>⁵D₁ → ⁷F₆</td>
</tr>
<tr>
<td></td>
<td>16949</td>
<td>⁵D₁ → ⁷F₄</td>
</tr>
<tr>
<td></td>
<td>16000 a</td>
<td>⁵D₁ → ⁷F₃</td>
</tr>
<tr>
<td></td>
<td>15380 a</td>
<td>⁵D₁ → ⁷F₃</td>
</tr>
</tbody>
</table>

⁴ These lines are observed through a hand spectroscope and are accurate within 100 wavenumbers.

Fluorescence of Methanolic Solutions

The methanolic solutions of europium mono and bis-terpyridyl and terbium-terpyridyl complexes fluoresce strongly at room temperature and offer possibilities as potential candidates for liquid laser materials.

A 1 : 2 mixture of methanolic solutions of Eu³⁺ and terpyridyl has a fluorescence lifetime τ = 310 μs and Φ = 0.07 at room temperature. This τ value may be compared to τ = 250 μs for bis-dipyridyl complex and τ = 80 μs for europium-dibenzoylmethide solution at room temperature. On lowering the temperature, a decrease of quantum efficiency (Φ) of the 1 : 2 mixture of europium-terpyridyl was noted. This is quite unexpected. Another isolated case where this phenomenon was observed is that of europium acetophenone solution.

In solution probably the bis-complex is dissociated to the mono-complex and a free terpyridyl molecule. The energy transfer at low temperature being inferior to that at room temperature may be attributed to collision changes with temperature.

A 1 : 1 mixture fluoresces slightly when the components are first mixed and the intensity increases with time. Conductometric titration of the 1 : 1 mixture revealed that the complexation in methanol is slow at room temperature, thus supporting the increase in intensity with time of the 1 : 1 mixture. It seems that in methanolic solutions of the mono-terpyridyl complex, the terpyridyl molecule is bound to the europium ion, and the energy transfer from the ligand to the Eu³⁺ is an intramolecular one. Addition of excess of Eu³⁺ ions to a solution of the solid complex in methanol quenched the fluorescence of the solution. The same effect is obtained with the addition of Gd³⁺ ions.

Experimental

The fluorescence spectra were measured with a Beckman DU spectrophotometer equipped with a fluorescence attachment. Filter no. 22892 (Beckman n) was placed between the light source and the sample. Unfortunately the phototube response in the red region and in the yellow of the Beckman instrument is not constant and thus a direct comparison of the ⁵D₀ → ⁷F₁ and ⁵D₀ → ⁷F₂ transitions cannot be made. A Schmidt-Haensch “Longo II” spectroscope provided with a wavelength scale was also used to observe the emission spectra.

Acknowledgement

The author is indebted to Dr. F. Halverson and Dr. J. S. Beines of the Central Research Laboratory of American Cyanamid for measuring the lifetimes and taking some phosphorescence spectra.